Master thesis : Tip leakage flow in high pressure turbines

نویسندگان

  • Z. P. ZOU
  • Yu Min LIU
چکیده

In the framework of this master thesis, a numerical study has been carried out in order to investigate the effect of tip geometry on the tip leakage flow and heat transfer features in a unshrouded high pressure axial flow turbine stage designed by Erhard [10]. Four different tip profiles were considered, namely a default flat tip, a modified flat tip, a modified double squealer tip and a modified double thin squealer tip. The performances of the distinct tip profiles were compared to determine the improvement in terms of leakage mass flow rate and heat transfer. The computations were carried out on a single rotor blade with periodic boundary conditions. Grid independence study was performed in order to determine the adequate mesh to employ for the computations. Turbulence was modelled with the BSL-RSM model because it provides more advantages than its SST counterpart model. At the end, it was proven that adoption of a cavity can drastically enhance the aerothermal performances, that is, providing a decrease in the leakage loss and average heat transfer over the tip.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance evaluation of trapezoidal teeth labyrinth seal

The present paper investigates the effects of the trapezoidal teeth labyrinth seal on the leakage amount in gas turbines. The influences of increasing the number of teeth from 1 to 6 with step 1 and the tip clearance s=0.5 to 7.5 mm on the leakage flow at different pressure ratios of PR=1.5, 2 and 2.5 are examined, comprehensively. The analysis is performed numerically using a Finite-Volume...

متن کامل

Assessment of various rotor tip geometries on a single stage gas turbine performance

Tip leakage loss introduces major part of losses of the rotor in axial gas turbines. Therefore, the rotor blade tip has a considerable effect on rotor efficiency. To understand the flow physics of the rotor tip leakage, we solve the flow field for different tip platforms (passive flow control) and by considering coolant tip injection (active flow control). Various blade tip configurations s...

متن کامل

Effects of Different Turbulence Models in Simulation of Unsteady Tip Leakage Flow in Axial Compressor Rotor Blades Row

Characteristics of rotor blade tip clearance flow in axial compressors can significantly affect their performance and stable operation. It may also increase blade vibrations and cause detrimental noises. Therefore, this paper is contributed to investigate tip leakage flow in a low speed isolated axial compressor rotor blades row. Simulations are carried out on near-stall condition, which is val...

متن کامل

Effect of a ring type barrier and rotational speed on leakage flow of gas turbine brush seal

This paper investigates the effect of inserting a ring type barrier on leakage flow of brush seals with different bristles clearances (the distance between bristle pack tip and rotor surface). The ring is placed on both upstream and downstream sides of the bristles. An axisymmetric CFD model is employed to calculate radial pressure distribution along backing plate, axial pressure variation on r...

متن کامل

An Investigation into Turbine Blade Tip Leakage Flows at High Speeds

The effect of the blade tip geometry of a high pressure gas turbine is studied experimentally and computationally for high speed leakage flows. For this purpose two simplified models are constructed, one models a flat tip of the blade and the second models a cavity tip of the blade. Experimental results are obtained from a transonic wind tunnel to show the static pressure distribution along the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017